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important to explaining individual differences in number knowl-
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Introduction

Children growing up in industrialized societies begin to acquire a symbolic number system
before entering elementary school (Carey, 2009; Gelman & Gallistel, 1978; Wynn, 1990, 1992). This
process starts at around 2 years of age, when children start reciting the count list without neces-
sarily understanding the words they are saying, and develops for several more years as children
come to understand that each number word in the list represents a unique cardinal value, that
the count list can be employed in a counting routine to determine cardinality of any given set
of items, and that every number on the count list has a unique successor (Cheung, Rubenson, &
Barner, 2017; Fuson, 1988; Gelman & Gallistel, 1978; Le Corre & Carey, 2007; Wynn, 1992). This
early preschool symbolic number knowledge appears to lay a foundation for higher mathematics,
as it is highly predictive of later mathematical achievement even after controlling for other general
cognitive and demographic factors (Jordan, Kaplan, Ramineni, & Locuniak, 2009; Nguyen et al.,
2016; vanMarle, Chu, Li, & Geary, 2014). Given its foundational role, it becomes important to know
what cognitive and language abilities give rise to individual differences in preschool children’s
early number knowledge.

Foundations of mathematical thought

A majority of empirical and theoretical work to date has focused on the foundations of later devel-
oping mathematical thought. This work suggests that mathematical thinking is generally subserved by
at least three components: number-specific, language, and general cognitive abilities (e.g., Cirino,
2011; Dehaene, Piazza, Pinel, & Cohen, 2003; LeFevre et al., 2010). However, the contribution of each
component varies with the particular mathematical skill or outcome of interest and across develop-
ment (e.g., Cirino, 2011; LeFevre et al., 2010; Sowinski et al., 2015). To our knowledge, such theories
have yet to be tested at the earliest stages of symbolic numerical concept development in preschool-
ers. Thus, although these existing theories of the foundations of mathematics provide a general frame-
work for thinking about the types of cognitive and linguistic factors that may be important to thinking
about numbers, their particular contributions to initial symbolic number knowledge before children
enter school remain unclear.

Sources of individual differences in early number knowledge

Other studies have focused on the foundations of earlier symbolic number knowledge but in a more
piecemeal fashion (Abreu-Mendoza, Soto-Alba, & Arias-Trejo, 2013; Brannon & Van de Walle, 2001;
Kroesbergen, Van Luit, Van Lieshout, Van Loosbroek, & van de Rijt, 2009; Mussolin, Nys, Content, &
Leybaert, 2014; Mussolin, Nys, Leybaert, & Content, 2012; Negen & Sarnecka, 2012; Shusterman,
Slusser, Halberda, & Odic, 2016; vanMarle et al., 2014, 2016; Wagner & Johnson, 2011). That is, par-
ticular studies have focused on relationships between a particular cognitive or language ability and
early symbolic number knowledge.

From this work, knowledge of the count list has been proposed as foundational for conceptual gains
in early symbolic number system understanding (e.g., Carey, 2009; Gelman & Gallistel, 1978; Le Corre,
Van de Walle, Brannon, & Carey, 2006; Wynn, 1990, 1992). Children start to acquire a symbolic num-
ber system by memorizing the number words and their fixed order (i.e., the count list) without nec-
essarily understanding the numerical meanings of the words or knowing how to employ them to
count precisely (Carey, 2009; Fuson, 1988; Wynn, 1990, 1992). Furthermore, even after cardinal
meanings of the first number words are acquired, knowledge of the count list continues to precede
deeper understanding of symbolic number (Carey, 2009; Davidson, Eng, & Barner, 2012; Fuson,
1988; Le Corre et al., 2006). Therefore, although count list knowledge may be a necessary developmen-
tal component, it is certainly not sufficient for either conceptual or procedural mastery of the symbolic
number system (Carey, 2009; Fuson, 1988; Le Corre et al., 2006). Given its proposed importance, it is
not surprising that knowledge of the count list has been shown to correlate with deeper number
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knowledge (Davidson et al., 2012; Mussolin et al., 2012, 2014; vanMarle et al., 2014). However, the
relative importance of count list knowledge compared with other number-specific and domain-
general cognitive abilities remains unclear.

It has also been proposed that children use nonverbal, approximate numerical intuitions in acquir-
ing symbolic number knowledge (Dehaene, 1997; Gallistel & Gelman, 1992, 2000; but see Le Corre &
Carey, 2007). Several decades of research now show that even very young children and infants are able
to reason about and act on the approximate numerosity of sets of objects nonverbally (see Anderson &
Cordes, 2013, and Feigenson, Dehaene, & Spelke, 2004, for reviews). This ability has been referred to as
the approximate number system (ANS) (Dehaene, 1997; Feigenson et al., 2004; Gallistel & Gelman,
2000). It has been hypothesized that the ANS forms an important conceptual foundation for under-
standing symbolic number words and, thus, should be associated with early number knowledge
(Dehaene, 1997; Gallistel & Gelman, 1992, 2000; vanMarle et al., 2016; Wagner & Johnson, 2011).
Some studies have shown an association between individual differences in nonsymbolic approximate
numerical abilities, typically measured as accuracy in a nonsymbolic numerical comparison task (e.g.,
comparing sets of objects), and individual differences in early number knowledge (Abreu-Mendoza
et al., 2013; Mussolin et al., 2012; Mussolin et al., 2014; Shusterman et al., 2016; vanMarle et al.,
2014, 2016; Wagner & Johnson, 2011). However, the relation between nonsymbolic approximate
numerical abilities and symbolic number knowledge is controversial, with a few other studies report-
ing no relation between the two (Huntley-Fenner & Cannon, 2000; Negen & Sarnecka, 2015).

Inconsistency in the findings of the relations between the ANS and early number knowledge par-
allels the inconsistency in the findings of the relations between the ANS and later developing mathe-
matics in older children and adults. That is, a number of studies show a relationship between the ANS
andmathematics achievement, whereas other studies do not (see Chen & Li, 2014, and De Smedt, Noël,
Gilmore, & Ansari, 2013, for reviews). One predominant explanation for the mixed results is that the
relation between the ANS and mathematics ability may be confounded by general cognitive factors
(e.g., Fuhs & McNeil, 2013; Gilmore et al., 2013; but see Keller & Libertus, 2015). In many contexts,
comparing sets of items on number requires one to actively inhibit conflicting information or
responses to other non-numerical properties such as the individual item size or total area of the
objects, and such executive processes also highly correlate with children’s early mathematical abilities
(Fuhs & McNeil, 2013; Gilmore et al., 2013). Controlling for executive processes has been show to
severely reduce or even eliminate statistical relations between mathematics achievement and approx-
imate numerical abilities in several studies (e.g., Fuhs & McNeil, 2013; Gilmore et al., 2013; but see
Keller & Libertus, 2015).

Like the case of later mathematics achievement, executive functions may also confound the rela-
tionship between the ANS and earlier symbolic number knowledge. Most previous work on the rela-
tion between the ANS and early number knowledge has not controlled for general cognitive abilities
(Abreu-Mendoza et al., 2013; Rousselle, Palmers, & Noël, 2004; Shusterman et al., 2016; Wagner &
Johnson, 2011). Although the few studies that have attempted to control for general cognitive abilities
showed that the relation between the ANS and early understanding of cardinality holds (Mussolin
et al., 2014; vanMarle et al., 2014, 2016), further work is needed to more deeply understand this
relationship.

Finally, many have hypothesized a specialized role of language in learning symbolic numbers (see
Barner, 2017; Carey, 2009, and Spelke, 2011, for reviews). As evidence of this, language abilities, such
as young children’s symbolic knowledge of letters and words, as well as their general receptive vocab-
ulary have been found to correlate with early mathematical abilities, including symbolic number
knowledge (Chu, vanMarle, & Geary, 2015; Fuhs & McNeil, 2013; Mussolin et al., 2012; Negen &
Sarnecka, 2012; vanMarle et al., 2014, 2016). Furthermore, LeFevre et al. (2010) showed that
language-related abilities were related to seven different early mathematics outcomes measured in
children, including early symbolic number knowledge, and that at least for some mathematics out-
comes language-related abilities showed stronger associations than the number-specific and general
cognitive abilities.

In sum, there is empirical support for the contribution of number-specific, language, and general
cognitive abilities to early symbolic number knowledge. However, the unique contribution and
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relative importance of each to early preschool symbolic number knowledge acquisition remains
understudied and unclear.

The current study

Here we used an individual differences approach to better understand the foundations of early
symbolic number knowledge. Specifically, we assessed the extent to which individual differences in
verbal and nonverbal numerical abilities, general cognitive abilities, and language abilities are related
to individual differences in children’s early symbolic number knowledge. We followed a similar logic
as used in previous cross-sectional studies of mathematics achievement with older children (e.g.,
Cirino, 2011; Fuchs, Geary, Compton, Fuchs, & Hamlett, 2010; Libertus, Feigenson, & Halberda,
2011; Sowinski et al., 2015), reasoning that if a given cognitive or language ability uniquely con-
tributes to number development in preschoolers, then individual differences in that ability would
likely be associated with individual differences in number knowledge even after accounting for other
associated abilities.

We focused on a cross-sectional sample of 3- and 4-year-old children in the midst of acquiring a
symbolic number system because this has been documented as a unique time point in development
where individual children are likely to maximally differ in symbolic number knowledge (Le Corre
et al., 2006; Sarnecka & Lee, 2009; Wynn, 1990, 1992). Before this age, most children have little if
any symbolic number knowledge, and it is difficult to assess cognitive and language abilities (e.g.,
Negen & Sarnecka, 2015; Odic, Paul, Hunter, Lidz, & Halberda, 2013). Shortly after this age, typically
developing children begin to perform closer to ceiling on early number knowledge assessment tasks
(e.g., Chu, vanMarle, & Geary, 2013), and remaining individual differences become further confounded
with formal instruction in school.

Given that the contribution and relative importance of hypothesized variables to early number
knowledge are currently unknown, we took a data-driven approach toward theoretical model selec-
tion. We started with number-specific, language, and general cognitive variables thought to be impor-
tant to early number knowledge and computed multiple regression models of all possible unique
combinations. We then employed a Bayesian analytic approach to alternative model selection
(Rouder & Morey, 2012). This approach provides both a transparent quantitative metric to directly
compare alternative models (i.e., identifying the best combination of cognitive abilities that explain
variance in symbolic number knowledge) and allows one to evaluate the relative explanatory power
of specific variables in each model (i.e., ranking variables by importance to model). The core of this
approach is to compute a Bayes factor, which is a ratio of the probability of the data given one model
(e.g., Model MA) relative to another model (e.g., Model MB) (i.e., P(Y|MA)/P(Y|MB), where P denotes
probability and Y denotes the data) (see Rouder & Morey, 2012, for details on computing Bayes fac-
tors). For instance, if the comparison of two hypothetical models, A and B, yielded a Bayes factor of
2 (denoted BA_B = 2), then this would indicate that the data are twice as probable under Model A
(MA) compared with Model B (MB). Therefore, the magnitude of the Bayes factor indicates the extent
of evidence in favor of one model compared with another. The larger the Bayes factor, the more evi-
dence in favor of the first given model (e.g., Model A); the closer the Bayes factor to 1, the more similar
the two models in their explanatory power of the data. Alternative models can then be directly com-
pared and contrasted by Bayes factors.

Because alternative models are composed by the systematic inclusion of some variables and the
exclusion of others, the Bayes factor also provides a measure of the relative explanatory power lost
or gained by removing or adding specific variables (Rouder & Morey, 2012). Thus, computing and com-
paring the Bayes factors among many different alternative models can also be informative as to the
relative importance of the variables uniquely contributing to the model (Moore, vanMarle, & Geary,
2016; Mou et al., 2016; Rouder & Morey, 2012). Therefore, compared with traditional model identifi-
cation and comparison methods (e.g., stepwise regression analysis), the Bayes factor approach pro-
vides a convenient option to both identify the best combination of variables that uniquely explain
individual differences in early number knowledge and quantify their relative importance. Moreover,
the evaluations on the models and the variables are carried out on a transparent quantitative metric
(i.e., the magnitude of Bayes factors). Thus, the evaluation results can be interpreted straightforwardly
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(e.g., Bayes factor = 5 indicates that data are 5 times as probable under one model relative to the
other), which is more difficult in traditional model selection approaches with significance tests
(Rouder & Morey, 2012).
Method

Participants

A total of 131 preschool-aged children from the Midwest region of the United States (60 boys) par-
ticipated in our study and had complete data for all of the tasks of interest (Mage = 3 years 10 months
25 days, SD = 52 days, range = 3 years 7 months 19 days to 4 years 3 months 18 days). An additional 17
children (8 boys) were eliminated for incomplete data records. For children in the final sample, par-
ents reported that 54.2% of the children had attended or were currently attending preschool. Parents
of these child participants had a modal education level of a bachelor’s degree (39.5% of 124 parents
who reported education level) and a modal yearly household income of $60,000 to $80,000 (22.3%
of 121 parents who reported household income).1

Written consent for children’s participation was obtained from a parent or legal guardian. Children
received a small gift for their participation, and parents were reimbursed for travel expenses. This
study was conducted under the approval of the University of Illinois at Urbana–Champaign institu-
tional review board.

Materials and procedure

Data for this study were collected on the first visit of a 2-week computer-based numerical training
study. All of the tasks were administered in a fixed order as described below.

Count list knowledge
Count list knowledge (count list) in the current study is taken as a proxy for number-specific expe-

rience (see Davidson et al., 2012, for a similar rationale). To assess this, children were asked to recite
the count list, counting as high as possible starting with ‘‘one,” with a stop rule at ‘‘twenty-five.” The
highest number word recited correctly in sequence was recorded as the score for the task (with 25
being the maximum score children could receive).

Symbolic number knowledge
Early symbolic number knowledge (number knowledge) in the current study refers to children’s

conceptual understanding of the spoken number words and counting. To assess this, we measured
children’s ability to produce and label exact cardinal values 1–8. More specifically, number knowledge
was assessed using the composite score (average accuracy) from modified versions of two well-
established tasks administered on a computer: the give-a-number (Give-N) task (Wynn, 1990, 1992)
and the what’s-on-this-card (WOC) task (or how-many task) (Gelman, 1993; Le Corre et al., 2006).
1 Further demographic descriptive statistics include the following. The reports on the parental educational level showed that
13.7% of parents had obtained professional degrees (e.g., M.D., Ph.D.; n = 17), 27.4% had obtained master’s-level degrees (e.g., M.A.,
M.S.; n = 34), 39.5% had obtained bachelor’s-level degrees (e.g., B.A., B.S.; n = 49), 11.3% had obtained associate’s degrees (n = 14),
7.3% had high school diplomas (n = 9), and 0.8% had less than a high school diploma (n = 1). The educational levels were coded on a
6-point scale (professional degree = 1 and less than a high school diploma = 6). The yearly household income reports showed that
0% of the families had incomes less than $9,999 (n = 0), 1.7% had incomes from $10,000 to $19,999 (n = 2), 5.0% had incomes from
$20,000 to $39,999 (n = 6), 16.5% had incomes from $40,000 to $59,999 (n = 20), 22.3% had incomes from $60,000 to $79,999
(n = 27), 13.2% had incomes from $80,000 to $99,999 (n = 16), 14.0% had incomes from $100,000 to $119,999 (n = 17), 9.9% had
incomes from $120,000 to $139,999 (n = 12), 5.8% had incomes from $140,000 to $159,999 (n = 7), 3.3% had incomes from $160,000
to $169,999 (n = 4), 2.5% had incomes from $170,000 to $179,999 (n = 3), and 5.8% had incomes of $180,000 or more (n = 7). These
levels were coded on a 12-point scale (<$9999 = 1 and $180,000 or more = 12). No strong correlations were observed between
children’s symbolic number knowledge and the demographic factors, including parental educational levels, household income,
children’s preschool entry, and gender. Because these correlations were low (rs < .192, Bayes factors < .83, favoring no correlations
between variables), these factors were not included in formal data analyses.
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Although both of these tasks typically have been used to measure children’s early conceptual knowl-
edge of numbers, they tap into somewhat different aspects of number understanding (see Gelman,
1993, Le Corre et al., 2006, and Wynn, 1990, 1992, for discussions); the give-a-number task requires
children to produce a requested cardinality, and the what’s-on-this-card task (or how-many task) asks
children to identify the cardinal value of a set of items (Gelman, 1993; Wynn, 1990, 1992). Thus, we
combined scores from the two tasks as a composite measure of symbolic number word understanding
in the current study (see Hyde, Simon, Berteletti, & Mou, in press for similar implementation).

Give-a-number. In the Give-N task, children were presented with 10 items (e.g., butterflies) located in
a row at the top of the computer screen and heard the computer request a given number (e.g., ‘‘five”).
Children were asked to give the number of items as requested by pressing the spacebar, with each
press moving one item from the top to the center of the screen. Children were encouraged to count
aloud when pressing the spacebar or to count the items moved down. In the first test block, children
were given a practice trial at the beginning of the block in which they were asked to give one item.
Only for this practice trial did children receive verbal feedback from the experimenter. After this trial,
children received seven test numbers from ‘‘two” to ‘‘eight” that were requested in a random order.
Then, children received two more test blocks, each having eight test numbers from ‘‘one” to ‘‘eight”
presented in a random order. Each block had a different type of item (butterflies, fish, or birds). Chil-
dren were allowed to restart a trial if they thought they had given a wrong number and wanted to cor-
rect it regardless of whether the answer was really wrong. The total percentage of correct responses
(out of 24 trials) was used as the score for the test.

It is important to note that some studies use knower level, or the highest number the child shows
evidence of understanding, as the dependent variable on the Give-N task (e.g., Le Corre et al., 2006; Lee
& Sarnecka, 2010; Piantadosi, Jara-Ettinger, & Gibon, 2014; Wynn, 1992). Operational definitions of
knower level vary tremendously by task context and research group, making it challenging to defini-
tively compute and compare across studies. Instead, we chose percentage correct because it can be
objectively computed and directly compared across studies.

What’s-on-this-card. In the WOC task, children were presented with pictures containing 1–8 items on
the computer screen and were asked, ‘‘Howmany X [where X could be apples, butterflies, or fish]? Can
you count them?” Children were encouraged to use their fingers to count the items one by one. The
last number word children produced in the counting process was recorded as the answer, and the
experimenter did not ask the ‘‘How many?” question again after the counting process. The experi-
menter recorded that number (e.g., ‘‘two”) by pressing the corresponding number key on the key-
board. The task started with a practice trial with 1 item, and children received feedback from the
experimenter for this trial (e.g., ‘‘There is one apple”). After this practice trial, sets between 1 and 8
items were presented in a random order in a test block. Three blocks were given (no practice trial
in the latter two blocks), each containing a different type of item (apples, butterflies, or fish). For
the same reason as in the Give-N task, a total percentage of correct responses (out of 25 trials, includ-
ing performance in the first 1-item trial) was used as the score for the WOC task.

Approximate numerical comparison
This task (approx. number) assessed children’s ability to make nonverbal approximate numerical

comparisons by requiring them to point to the more numerous set of items (e.g., Halberda,
Mazzocco, & Feigenson, 2008). In this task, children were shown a display containing two sets of dots
side by side and were asked to point to the set with more dots. One set had red dots and the other had
blue dots, and side of presentation was counterbalanced. For the first 10 trials, children received feed-
back in the form of ‘‘smiley” and ‘‘frowny” faces to indicate correct and incorrect answers, respectively.
No feedback was given for the remaining 54 test trials. Sets were presented on the screen until chil-
dren gave a response. Seven ratios (1:2, 2:3, 3:4, 4:5, 13:16, 7:8, and 8:9) were used to create sets, and
numbers ranged from 8 to 32, with one of the sets always being 16 (i.e., reference). Test trials were
presented in a random order, with the larger set appearing equally often on the left and right sides
of the screen. Although randomly presented, half of trials contained sets equated on individual dot
size, where the number of dots was positively correlated with total area of the dots in the array or
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was congruent with non-numerical spatial properties (i.e., congruent trials). The other half of trials
contained sets equated on total area, where the number of dots was inversely related to size of the
dots or was incongruent with non-numerical spatial properties (i.e., incongruent trials). This was done
so that non-numerical features of the sets were not predictive of the correct answers in the experi-
ment as a whole. A total percentage correct (out of 64 trials) was used as the main score for the test.
Since incongruent trials have been hypothesized to be more demanding for general cognitive abilities
(e.g., executive functions) than the congruent trials, we also computed percentage correct on congru-
ent trials (32 trials) and incongruent trials (32 trials) and included both in some supplementary anal-
yses to determine whether trials demanding more or less general cognitive abilities have similar or
different contributions compared with early number knowledge.

It is important to note that all comparison trials, including the 10 trials with feedback, were
included to maximize the number of trials used to compute individual participant scores. However,
it is not likely that the inclusion of the feedback trials would influence the relations of the individual
differences between the numerical comparison performance and symbolic number knowledge given
that all children received the same number of trials with feedback at the beginning of the task.

Language abilities
Peabody Picture Vocabulary Test IV. Children’s receptive vocabulary was assessed in this picture-based
vocabulary task (recept. vocab.) (Dunn & Dunn, 2007). In this task, children heard a word and were
required to point the corresponding picture among four potential choices. The standardized protocol
for test administration was followed. Children started the assessment from a level corresponding to
their age (e.g., in the current study, children started from the level for age 3 or 4 years). To set the basal
level, the criterion requires that 11 of 12 items must be correct in the starting level; otherwise, the
previous level, corresponding to a younger age, must be administered. Children move to the next level
if they have at least 5 of 12 correct items. The test is stopped when children make 8 or more mistakes
on a given level. Raw scores were recorded and also converted to standardized scores according to age
norms.

Woodcock–Johnson III Letter–Word Identification subtest. This test (letter id.) was used to measure early
reading achievement, particularly symbolic knowledge of letters and words (Woodcock, McGrew, &
Mather, 2001). In this task, children were shown cards with letters or words. More specifically, the test
started by requiring children to identify letters among potential choices (e.g., ‘‘point to E”), and pro-
gressively children were asked to name the letters or words (e.g., ‘‘What is the name of this letter”).
All children started with the first item and stopped when six consecutive mistakes were made. Raw
scores were recorded as the number of correct answers and were converted to standardized scores
according to age norms.

General cognitive abilities
Three different tasks were administered to assess general cognitive abilities: working memory,

conflicting information processing, and response inhibition.

N-back working memory task. This task (working mem.) assessed visual working memory for objects
using a modified version of the classic N-back memory task (e.g., Kirchner, 1958). In this task, children
were shown pictures of objects (e.g., table, coat, umbrella) sequentially presented on the screen and
were asked to indicate whether a picture was the ‘‘same” as or ‘‘different” from all of the pictures pre-
viously seen. Pictures were repeated either immediately (1-back) or after one novel picture (2-back).
Children were required to press a keyboard button when they thought the same picture was repeated.
The experimenter and children together completed the first sequence of pictures until the first
repeated picture was shown. During the first sequence, the experimenter said aloud ‘‘different, differ-
ent . . .” and said ‘‘same! So we press the button!” when the first repeated picture appeared. After this,
children completed the remaining trials under the supervision of the experimenter without receiving
feedback from the experimenter. Pictures were shown for 2 s. and were separated by 500 ms. Children
were presented with 60 pictures, 36 of which were nonrepeated and 12 of which were repeated. The
12 repeated pictures were evenly split between 1-back and 2-back conditions. The computer sounded
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with a positive chime (i.e., high pitch) as feedback for correct responses and no feedback was gener-
ated by the computer for errors or misses. Performance in this task was scored as a percentage of cor-
rect hits out of 12 test trials.

Spatial conflict processing task. This task (conflict) assessed executive processing of conflicting spatial
information using a modified version of the Simon task (Willoughby, Wirth, Blair, & Family Life
Project Investigators, 2012). The task was composed of three short blocks where children judged
the direction of arrows presented on the computer screen by pressing the corresponding keys on
the keyboard (pressing ‘‘F” for left-pointing arrows and pressing ‘‘J” for right-pointing arrows). How-
ever, the locations of the arrows on the screen changed in the three blocks. In the first block of 8 trials,
arrows were presented in the center of the screen and pointed to the left or right alternately across
trials. In the second block of 14 trials, arrows were presented on the left or right side of the screen
and always pointed congruently with the location in which they were presented (e.g., an arrow that
was presented on the left of the screen always pointed to left). In the final test block of 20 trials,
arrows were presented on the left or right side but pointed either congruently or incongruently with
the location they were presented. Congruent trials were the same as in the second block, and incon-
gruent trials presented an arrow on one side that pointed to the opposite direction (e.g., an arrow that
was presented on the left side of the screen pointed to the right). In the incongruent trials, children
received conflicting spatial information from the location and the pointing direction of the arrow. Chil-
dren needed to resolve the conflicting information by applying the instructions of the task to focus on
where the arrow pointed. Positive (higher pitched) or negative (lower pitched) chimes were given as
feedback for correct and incorrect responses, respectively, for all trials. The percentage correct in each
block was recorded. To focus on children’s ability to process conflicting information, only performance
from the third test block was included in the analyses.

Go/No-go response inhibition task. This task (resp. inhibition) was used to assess response inhibition
using a modified version of the classic go/no-go task (Durston et al., 2002; Willoughby et al., 2012).
In this task, children saw sequentially presented pictures of cartoon animals on the computer screen.
Children were asked to press a button on the keyboard for every animal that appeared on the screen
(i.e., the go trials) except when a snake appeared. In this case, children were instructed to not press the
key when seeing the snake (i.e., the no-go trials). Pictures were presented for 2 s. and were separated
by 250-ms. blank screen. There were 60 pictures in total, and 15 of them were the snake pictures (i.e.,
15 no-go trials). Two snake pictures were separated by 1, 3, or 5 pictures of other animals. Positive
(higher pitched) and negative (lower pitched) chimes were given as feedback for correct and incorrect
responses, respectively. Because the focus of the task was on assessing children’s response inhibition,
only the percentage of correct responses on the no-go trials (out of 15) was used as the score for this
task.

Analysis

We used a Bayes factor analytic approach (Liang, Paulo, Molina, Clyde, & Berger, 2008; Rouder &
Morey, 2012) to identify the best combination of the variables of interest to early symbolic number
knowledge as well as the relative importance of these variables. Given that all variables in our design
have been hypothesized to be important but their actual contribution and relative importance to early
symbolic number knowledge is unknown, we took a data-driven approach toward Bayes factor model
selection. To do this, we first automatically computed the regression models for all possible combina-
tions of eight variables of interest included in our study (256 total models), including seven variables
derived from performance on our assessment tasks (count list knowledge, approximate numerical
comparison accuracy, working memory, response inhibition, conflict processing, receptive vocabulary,
and letter–word knowledge) and age. We then computed the Bayes factor between each of the models
and the null model (i.e., a model including only the intercept, with each Bayes factor in this analysis
denoted as Bm_null, where the subscript ‘‘m” represents a particular model tested and ‘‘null” represents
the null model; see the fourth column in Table 1). All Bayes factors for each model relative to the null
model (i.e., Bm_null) were then ordered based on their values. As shown in Table 1, the very large values



Table 1
Bayes factor analyses for assessment of fitting models.

Model Number of
variables

Bayes factors

Name Variables Bm_null Btop_m

Top-performing
model (Mtop)

count list + letter id. + approx. number + working mem. + conflict
processing

5 1.31 � 1016 1

M2 count list + letter id. + approx. number + working mem. + conflict
processing + resp. inhibition

6 1.26 � 1016 1.04

M3 count list + letter id. + approx. number + working mem. + conflict
processing + resp. inhibition + recept. vocab.

7 5.12 � 1015 2.56

M4 count list + letter id. + approx. number + working mem. + conflict
processing + recept. vocab.

6 4.53 � 1015 2.89

M5 count list + letter id. + approx. number + working mem. + resp.
inhibition

5 4.16 � 1015 3.15

M6 count list + approx. number + working mem. + conflict processing
+ resp. inhibition

5 3.77 � 1015 3.47

M7 count list + letter id. + approx. number + working mem. + resp.
inhibition + recept. vocab.

6 3.31 � 1015 3.96

M8 count list + letter id. + approx. number + working mem. + conflict
processing + resp. inhibition + age

7 2.70 � 1015 4.85

M9 count list + letter id. + approx. number + working mem. + conflict
processing + age

6 2.68 � 1015 4.88

M10 count list + approx. number + working mem. + resp. inhibition 4 2.48 � 1015 5.28

Note. count list, count list knowledge; letter id., letter–word identification; approx. number, approximate numerical compar-
ison; working mem., working memory; conflict processing, spatial conflict processing; resp. inhibition, response inhibition;
recept. vocab., receptive vocabulary. The first 10 of the 256 fitting models are presented here.
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of the Bayes factors between particular models and the null model (Bm_null) indicate that these partic-
ular models are much stronger in explanatory power compared with the null model. The model with
the largest value of Bm_null was identified as the top-performing model (denoted asMtop). Next, we sys-
tematically computed the Bayes factors between the top-performing model and various alternative
models (denoted as Btop_m; see the fifth column in Table 1) to further examine the importance of each
of the variables in the top model to number knowledge. First, we compared the Bayes factor of the top
model relative to other high-performing models to determine the appropriateness of the particular
combination of factors included in the top model. Next, we examined the importance of each one
of the variables by creating alternative models that either excluded or replaced each of the variables
in the top-performing model and computed the Bayes factors between the top-performing model and
these exclusion or replacement models. The underlying logic of this approach is that the Bayes factor
between the top-performing model and an exclusion or replacement model indicates the difference in
the explanatory power between the two models. Because this difference is due to excluding or replac-
ing a particular variable from the top-performing model, the Bayes factor quantifies the importance of
this particular variable to the top-performing model (Rouder & Morey, 2012).

To further address some more specific concerns in the existing literature on the relations among
the ANS, general cognitive abilities, language abilities, and number knowledge, we also conducted
an analysis dividing the approximate numerical comparison accuracy into trials demanding more
executive processing (incongruent numerical and non-numerical parameters) or less executive pro-
cessing (congruent numerical and non-numerical parameters) to determine whether these types of
trials made similar or unique contributions to explaining individual differences in number knowledge
(as seen in studies examining the relations between the ANS and general mathematics achievement,
Fuhs & McNeil, 2013; Gilmore et al., 2013; Keller & Libertus, 2015).

Our analyses were implemented using Morey and Rouder’s (2014) BayesFactor package (version
0.9.11–1) in R (version 3.1.3). We assessed relative importance of particular models and variables in
the model by comparing Bayes factors using an accepted rule-of-thumb approach, where Bayes factors
of 3 or less provide weak evidence, Bayes factors larger than 3 but less than 10 provide moderate
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evidence, and Bayes factors larger than 10 provide strong evidence for differences between models
(Jeffreys, 1961; Wetzels et al., 2011).
Results

Variables of interest

Symbolic number knowledge was correlated with all of the target cognitive and language abilities,
and many of these variables were also highly correlated (see Table 2). Descriptive statistics and cor-
relations between variables are presented in Table 2.

Top-performing model

The eight variables of interest were entered into analyses with symbolic number knowledge as the
dependent variable, and a Bayes factor was computed for each possible model relative to a model
including only the intercept (Mnull). The top-performing model (denoted as Mtop) contained five of
the eight variables: count list knowledge, letter–word identification, approximate numerical compar-
ison ability, working memory, and spatial conflict processing (see Table 1).

Comparison of Mtop with other models

To evaluate the appropriateness of the top-performing model (Mtop), we first compared it with
other performing models. More specifically, we computed a Bayes factor between the top-
performing model and all other models, ranking the Bayes factor values in an ascending order (the
smaller the Bayes factor, the closer the particular model to the top-performing model in explanatory
power to data) and selecting the top 10% of all models (i.e., 24 next best models) (Moore et al., 2016;
Mou et al., 2016; Rouder & Morey, 2012). Bayes factors revealed weak evidence that the top model
performed better than the three next best performing models (M2–M4) and moderate evidence that
the top model performed better than the remaining models in the top 10% of all possible models
(M5–M25).

To further evaluate the appropriateness of the variables included in the top model, we counted the
frequency of occurrence of each of the five variables inMtop in the top 10% of models. The five variables
included in the top-performing model were present in a majority of the 25 models (including Mtop).
Specifically, numerical list knowledge and nonverbal approximate numerical comparison ability were
present in 100% (24/24), working memory was present in 87.5% (21/24), letter–word identification
was present in 75% (18/24), and spatial conflict processing was present in 66.7% (16/24) of top com-
parison models.

Relative importance of specific variables in the top-performing model

Comparison with exclusion models
To further determine whether each of the variables in the top-performing model was critical to

characterizing early number knowledge, we computed Bayes factors between the top-performing
model and next best alternative models that excluded each of the five variables in turn. If excluding
a variable in the top-performing model substantially decreased the probability of observing the data,
then we would conclude that the particular variable was essential to explaining variance and, thus,
should be retained in a theoretical model of early number knowledge. On the other hand, if excluding
a particular variable did not substantially decrease the explanatory power of the top-performing
model, then we would conclude that the variable might be important but not essential to a theoretical
model of early number knowledge.

Results showed that excluding any one of the five variables in the top-performing model substan-
tially reduced the explanatory power. The Bayes factors between the top-performing model and the
other four-variable models, excluding the top five variables, one by one ranged from 6.12 to 808.64,



Table 2
Descriptive statistics and correlations for the variables of interest.

Mean
(SD)

number
knowledge

approx.
number

count
list

letter
id.

recept.
vocab

working
mem.

conflict
processing

resp.
inhibition

Symbolic number knowledge
(number knowledge)

.70
(.23)

Approximate numerical
comparison (approx.
number)

.66
(.10)

.50

Count list knowledge (count
list)

13.78
(6.49)

.57 .37

Letter–word identification
(letter id.)

9.19
(5.10)

.50 .39 .50

Receptive vocabulary (recept.
vocab.)

84.31
(18.80)

.42 .35 .32 .24

Working memory (working
mem.)

.71
(.23)

.32 .17 .17 .17 .38

Spatial conflict processing
(conflict processing)

.78
(.16)

.32 .23 .18 .07 .28 .02

Response inhibition (resp.
inhibition)

.87
(.14)

.34 .20 .24 .25 .12 .03 .32

Age 3.90
(.15)

.19 .21 .20 .24 .24 �.01 .06 .10

Note. Correlation coefficients (r) among the variables were computed with the BayesMed package (version 1.0.1) (Nuijten,
Wetzels, Matzke, Dolan, & Wagenmakers, 2015) in R and are reported in the table. Bold values correspond to those correlations
with a Bayes factor larger than 3, in favor of the correlation between the two variables (Wetzels & Wagenmaker, 2012). The
score for symbolic number knowledge was the averaged accuracy from the give-a-number task (M = .67, SD = .28) and the
what’s-on-this-card task (M = .73, SD = .21) (r = .74 between the scores of the two tasks). The raw scores of letter–word
identification (measured with the Woodcock–Johnson III letter–word identification subtest) and receptive vocabulary
(measured with the Peabody Picture Vocabulary Test IV) are presented in the table and included in data analyses. For the
convenience of comparing data across studies with the same assessments, the standardized scores of these assessments are also
presented: letter–word identification (M = 110.60, SD = 12.64) and receptive vocabulary (M = 118.99, SD = 14.4).
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clearly above the rule-of-thumb threshold of 3 (Jeffreys, 1961), thereby providing moderate to strong
evidence that all of the variables in the top model are important for explaining individual differences
in number knowledge and, thus, should be retained in a theoretical model.

Comparing Bayes factors between exclusion models (relative to the top-performing model) also
provides some evidence of the relative importance of each variable. The comparison between the
top-performing model and the model that excluded count list knowledge (Mexclude_count) yielded a
Bayes factor of 808.64, providing extremely strong evidence that count list knowledge was the most
important variable in the top-performing model to explaining preschool symbolic number knowledge.
Further comparison of the Bayes factors between the top-performing model and the other exclusion
models (Table 3) suggested that after count list knowledge, approximate numerical comparison ability
was next most important. Approximate numerical ability was followed by the general cognitive abil-
ities of working memory and spatial conflict processing. Finally, knowledge of letters and words was
found to be the least important of all the uniquely important variables to explaining individual differ-
ences in early number knowledge.
Comparisons with replacement models
To further understand the relative importance of the factors in the top model, we computed Bayes

factors between the top-performing model and alternative models that replaced each one of the five
variables in the top-performing model. If replacing a variable in the top-performing model substan-
tially decreases the probability of the model, then this would provide more evidence that the partic-
ular variable cannot be replaced with other variables and, thus, should be retained in a theoretical
model of symbolic number knowledge. On the other hand, if replacing a particular variable with



Table 3
Bayes factors for the top-performing model relative to exclusion models.

Model Bayes factors

Name Variables Bm_null Btop_m

Top-performing model overall
(Mtop)

count list + letter id. + approx. number + working mem.
+ conflict processing

1.31 � 1016 1

Excluding count list (Mexclude_count) letter id. + approx. number + working mem. + conflict
processing

1.62 � 1013 808.64

Excluding approx. number
(Mexclude_approx.)

count list + letter id. + working mem. + conflict processing 5.44 � 1014 24.08

Excluding working mem.
(Mexclude_wm)

count list + letter id. + approx. number + conflict processing 8.51 � 1014 15.39

Excluding conflict processing
(Mexclude_conflict)

count list + letter id. + approx. number + working mem. 9.48 � 1014 13.82

Excluding letter id. (Mexclude_letter) count list + approx. number + working mem. + conflict
processing

2.14 � 1015 6.12

Note. Each exclusion model was selected based on the next best performing four-factor model with the particular variable of
interest excluded.
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another does not result in a decrease of the explanatory power of the model, then we would conclude
that the variable can be replaced by other variables and might not be uniquely important to a theo-
retical model.

Table 4 presents the alternative replacement models for each of the five variables with the next
best model, including the variable that was not included in the top-performing model. Bayes factors
of the top-performing model to alternative replacement models indicated that all variables in the top-
performing model could not be replaced without a moderate change in explanatory power given that
Bayes factors greater than 3 were observed in all cases.

Like the exclusion analysis, the replacement analysis also provided information about the relative
importance of each factor in the top-performing model. Based on the Bayes factors obtained, count list
knowledge appears not to be replaceable with other variables, and this suggests its unique importance
to the model. Although still important, spatial conflict processing and letter–word identification were
found to be less so given that the replacement models that were generated by replacing the two vari-
ables yielded only moderate to weak evidence of differing in explanatory power from the top-
performing model (all with Bayes factors slightly above 3) (Jeffreys, 1961).
Additional analyses for stimulus context effects of approximate numerical comparison

As a supplement to our main analysis, we also investigated the potential role of contextual task
demands in the relation between approximate numerical comparison ability and symbolic number
knowledge given some reports suggesting that some types of trials are more executively demanding
than others (Abreu-Mendoza et al., 2013; Fuhs & McNeil, 2013; Gilmore et al., 2013; Rousselle et al.,
2004). To do this, we first computed approximate numerical comparison accuracy separately for trials
where total surface area of dot arrays was positively correlated, or congruent, with numerosity and
trials where total surface area was negatively correlated, or incongruent, with numerosity. We then
entered approximate numerical comparison accuracy for congruent and incongruent trials simultane-
ously into our analyses to examine their potential contributions to explaining individual differences in
symbolic number knowledge.

Children’s performance on both congruent trials (M = .74, SD = .13) and incongruent trials (M = .59,
SD = .11) was above chance level (chance = 50%, ts > 9.40, Bayes factor > 2.45 � 1013, in favor of differ-
ence from chance). Consistent with previous studies on contextual demands on numerical comparison
(Abreu-Mendoza et al., 2013; Fuhs & McNeil, 2013; Gilmore et al., 2013; Rousselle et al., 2004), chil-
dren were more accurate on trials with congruent non-numerical stimulus parameters compared with
trials where non-numerical parameters were incongruent with number (t = 13.12, Bayes fac-
tor = 2.72 � 1022, in favor of difference between the two variables).



Table 4
Bayes factors for the top-performing model relative to replacement models.

Model Bayes factors

Name Variables Bm_null Btop_m

Top-performing model overall (Mtop) count list + letter id. + approx. number + working mem.
+ conflict processing

1.31 � 1016 1

Replacing count list (Mreplace_count) resp. inhibition + letter id. + approx. number + working
mem. + conflict processing

2.48 � 1013 528.22

Replacing approx. number
(Mreplace_approx)

count list + letter id. + resp. inhibition + working mem.
+ conflict processing

5.53 � 1014 23.69

Replacing working mem.
(Mreplace_working. mem.)

count list + letter id. + approx. number + recept. vocab
+ conflict processing

1.19 � 1015 11.01

Replacing conflict processing
(Mreplace_conflict processing)

count list + letter id. + approx. number + working mem.
+ resp. inhibition

4.16 � 1015 3.15

Replacing letter id. (Mreplace_letter) count list + resp. inhibition + approx. number + working
mem. + conflict processing

3.77 � 1015 3.47

Note. Each replacement model was selected based on the next best performing five-factor model not including the variable of
interest to be replaced. The replacement variables are in bold.
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Rerunning our data-driven Bayesian model selection procedure over all possible combinations of
variables of interest, but with both congruent and incongruent numerical comparison accuracy
entered separately (as well as all other variables as in our main analysis), resulted in the top-
performing supplemental model containing five variables: count list knowledge, letter–word identifi-
cation, approximate numerical comparison accuracy on the congruent trials, working memory, and
spatial conflict processing. That is, the top-performing model from our supplemental analysis included
the same variables as the top-performing model in our main analysis, but with approximate numerical
comparison accuracy on congruent trials and not approximate number comparison accuracy on incon-
gruent trials.

The Bayes factors between this top-performing supplementary model and all four-variable exclu-
sion models were larger than 3 (6.3–1337.5), providing moderate to strong evidence that no variables
in the top-performing model should simply be excluded. Excluding numerical comparison accuracy on
the congruent trials in particular yielded a Bayes factor of 7.87, providing moderate to strong evidence
for a drop in explanatory power.

All Bayes factors between the top-performing supplemental model and the replacement models for
each of the five variables were also larger than 3 except for the model that replaced approximate
numerical comparison on congruent trials (Bayes factor = 2.68). Importantly, the next best performing
replacement model for approximate numerical comparison accuracy on congruent trials was a model
that replaced approximate numerical comparison accuracy on congruent trials with approximate
number comparison accuracy on incongruent trials. Thus, although performance on congruent trials
was slightly more predictive, there was no more than weak evidence that two types of comparison
trials differed in their explanatory power.
Discussion

In this study, we investigated the potential contribution and relative importance of various numer-
ical, general cognitive, and language abilities to explaining individual differences at the early stages of
symbolic number knowledge acquisition in preschoolers. We did so by collecting independent assess-
ments of a variety of cognitive and language abilities hypothesized to be foundational to numerical
thinking and then used a data-driven Bayesian analytic approach to systematically and objectively
compare alternative models of all possible combinations of these variables to best explain individual
differences in early understanding of spoken symbolic numbers. Our analyses identified five variables
that uniquely contributed to explaining individual differences in preschool children’s symbolic num-
ber knowledge: knowledge of the count list, nonverbal approximate numerical comparison ability,
working memory, spatial conflict processing, and knowledge of letters and words. These findings
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are generally consistent with the predominant idea that the foundational mathematical thinking is
supported by number-specific, language, and general cognitive abilities (e.g., Cirino, 2011; Dehaene
et al., 2003; LeFevre et al., 2010). However, our findings move well beyond this general framework
to specify more precisely the contributions (or lack thereof) of particular subcomponents within num-
ber, language and general cognition. Furthermore, our data-driven analytic approach assessing all pos-
sible combinations of variables allows us to draw novel conclusions about the relative importance of
these variables to explaining individual differences in early symbolic number knowledge.

Bayes factors obtained in our study showed that preschoolers’ knowledge of the count list was by
far the strongest predictor of their symbolic number knowledge. A relationship between count list
knowledge and symbolic number knowledge in preschoolers has also been observed in other studies
(e.g., Davidson et al., 2012; Mussolin et al., 2012; vanMarle et al., 2014). In our study, count list knowl-
edge was present in all of the best performing models (top 10% of all the alternative models), and
excluding or replacing it with any other variables greatly decreased the explanatory power. Moreover,
the inclusion of additional general cognitive and language variables did not diminish its contribution.
Together, these results provide strong evidence that knowledge of the count list may be the most
important variable to explaining individual differences in number knowledge at this age.

One may argue that the strong association between knowledge of the count list and symbolic num-
bers is simply due to the former being another measure of the latter given that we assessed symbolic
number knowledge with tasks that involve counting. There is good reason to think that this is not an
appropriate interpretation. It is well documented that count list knowledge precedes deeper number
understanding given that children are able to recite the count list well before they understand what
the number words mean (Fuson, 1988; Le Corre & Carey, 2007; Le Corre et al., 2006; Wynn, 1992). As
evidence of this, a large majority of children in our sample knew the count list for all of the numbers
we were testing (i.e., 85.5% of children correctly recited the number words over 8) despite not having a
deeper understanding of their meaning. Instead, most children varied in their count list knowledge for
larger numbers (up to 25) well beyond those used to test number knowledge (only to 8). Thus,
although count list knowledge might be necessary, it is certainly not sufficient to grant deeper sym-
bolic number understanding.

Regardless of whether one accepts this logic, an open question remains as to what exactly drives
individual differences in count list knowledge. Differences in count list knowledge may be a proxy
for experience with numbers, with greater count list knowledge reflecting more practice, exposure,
or instruction on counting and numbers in general (Davidson et al., 2012). If this is the case, then expe-
rience or practice with the count list may facilitate individual differences in children’s number knowl-
edge in several respects. First, practicing the count list may enhance attention to the ordinal relations
between numbers, a conceptual aspect thought to be important to a basic understanding of the sym-
bolic number system (Brannon & Van de Walle, 2001; Le Corre et al., 2006). Second, practicing the
count list may also strengthen children’s representation of spoken number words and their quantita-
tive meaning, a verbal aspect thought to be important for numerical ability (Dehaene et al., 2003;
Soto-Calvo, Simmons, Willis, & Adams, 2015). Third, practicing the count list may increase children’s
spontaneous attention, or focusing, on number and, thus, serve as a mechanism of more continual
engagement with number in children’s environment (Hannula, Rasanen, & Lehtinen, 2007).

We also found that children’s nonverbal approximate numerical comparison ability was related to
number understanding. This finding, too, is supported by previous literature (Shusterman et al., 2016;
vanMarle et al., 2014, 2016; Wagner & Johnson, 2011). Some have suggested that the ANS forms a con-
ceptual foundation for learning the symbolic number system (Gallistel & Gelman, 1992; Gelman &
Gallistel, 1978; vanMarle et al., 2016; Wagner & Johnson, 2011; but see Huntley-Fenner & Cannon,
2000, and Le Corre & Carey, 2007). Under this view, individual differences in the ANS would lead to
individual differences in understanding of symbolic numbers. Others, however, have suggested and
provided evidence that the relation between the ANS and symbolic number knowledge may be driven
by common executive demands required in both numerical comparisons and learning numbers
(Abreu-Mendoza et al., 2013; but see vanMarle et al., 2014, 2016). It is certainly the case that approx-
imate numerical comparison involves multiple cognitive factors such as task comprehension, atten-
tional control, and inhibition (e.g., Fuhs & McNeil, 2013; Gilmore et al., 2013; Negen & Sarnecka,
2015). However, for several reasons, our data move beyond previous work to provide strong evidence
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showing that at least some portion of the relation between approximate numerical abilities and num-
ber knowledge cannot be accounted for by confounding general cognitive abilities.

First, we assessed the relation between the ANS and early number knowledge after strict control for
multiple components of general cognitive and language abilities that are thought to possibly confound
the relationship. Second, the Bayes factor approach allowed us to not only control for general cognitive
and language abilities in relation to numerical comparison but also to quantify and evaluate the rel-
ative importance of numerical comparison to other cognitive and language abilities in explaining indi-
vidual differences in early number knowledge. The results showed that although both general
cognitive and number-specific abilities make unique contributions to explaining individual differ-
ences, nonsymbolic approximate numerical ability appeared to be more important to early number
knowledge than any of the general cognitive and language abilities. Third, extending previous work
on the relations between the ANS and symbolic number understanding (Abreu-Mendoza et al.,
2013; Rousselle et al., 2004; Shusterman et al., 2016; vanMarle et al., 2014, 2016), we decomposed
the approximate numerical comparison accuracy in executively demanding incongruent trials and less
demanding congruent trials and examined the relations between these accuracies and number knowl-
edge after controlling for general cognitive and language abilities. We found that accuracy on congru-
ent and incongruent trials was similarly important to explaining number knowledge after controlling
for general cognitive and language abilities. This finding runs counter to the claim that executive
demands of incongruent trials, not the ANS per se, drive correlations with symbolic number abilities.
Here, however, we can speak only to the relation among the ANS, executive function, and early sym-
bolic number knowledge, and our findings do not preclude the possibility that the relationships are
different with later developing aspects of numerical and mathematical achievement.

Associations between general cognitive abilities and children’s numerical and mathematical abili-
ties have already been documented in previous studies (Fuhs & McNeil, 2013; Gilmore et al., 2013;
vanMarle et al., 2014, 2016). Our results show that the contribution of general cognitive abilities
(working memory and spatial conflict processing), while uniquely contributing, may be less important
to explaining individual differences in early symbolic number knowledge than recent discussions
might suggest (Gilmore et al., 2013). As evidence of this, we found that general cognitive factors
(working memory and spatial conflict processing), while uniquely contributing, were much less
important to explaining variability in early symbolic number knowledge than the number-related fac-
tors (count list and number comparison). We also showed that working memory and spatial conflict
processing uniquely contributed to explaining individual differences in children’s number knowledge,
but response inhibition did not. Thus, although there is some overlap in the tasks, it may be the case
that working memory and executive functions related to processing conflicting information are more
important to early knowledge than executive response inhibition.

Finally, we observed evidence that the relationship between individual differences in language
abilities and early symbolic number knowledge might also be weaker than some have previously
thought once number-specific language (i.e., count list knowledge) is controlled (e.g., Barner, 2017;
Carey, 2009; Negen & Sarnecka, 2012). Language abilities have been proposed to be a major founda-
tion for mathematical thought, although these abilities may contribute differently to different math-
ematics outcomes over development (LeFevre et al., 2010). After extensively accounting for general
cognitive and number-specific abilities, we did not observe that individual differences in receptive
vocabulary uniquely contributed to explaining individual differences in early symbolic number
knowledge. Instead, we found that individual differences in children’s ability to identify letters and
words made unique contributions to explaining individual differences in symbolic number knowl-
edge. It could be that learning symbolic number does rely on verbal processing, and knowledge of let-
ters and words reflects some aspects of individual differences in language abilities that our receptive
vocabulary task does not. If this were the case, then our evidence would be consistent with the notion
that language plays a unique role in early number concept development. It is also possible that the
source of individual differences in children’s letter–word knowledge predictive of symbolic number
knowledge could be nonlinguistic in nature (Verhoeven, Reitsma, & Siegel, 2010). Regardless, it should
also be noted that the contribution of letter–word identification was relatively small compared with
other variables deemed uniquely important. This finding suggests that if language abilities do form a
foundation for mathematical thought, then the contribution to individual differences may be smaller
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than that of other cognitive variables at this early point in symbolic number knowledge acquisition
and smaller than it is for later developing numerical and mathematical abilities (LeFevre et al., 2010).

Conclusions

Using a Bayes factor analytic approach, our study identified the combination of variables that best
explained individual differences in preschool symbolic number knowledge. These include (a) knowl-
edge of the count list, (b) nonverbal approximate numerical ability, (c) working memory, (d) the exec-
utive ability to monitor, process, and inhibit conflicting information, and (e) the ability to identify
letters and words. The variables identified as uniquely contributing are those generally expected from
previous work and theorizing on symbolic number and mathematics development (e.g., Cirino, 2011;
Dehaene et al., 2003; LeFevre et al., 2010). However, our findings add to existing theories by providing
novel insight into the relative importance of these variables. We provide strong evidence over a vari-
ety of data-driven metrics that number-specific abilities make the largest contributions, followed by
general cognitive abilities, and then knowledge of letters and words. This model suggests that there
are likely many ways in which individual differences between children in number knowledge can
arise. However, it also suggests that the most important source appears to be knowledge of count list
(e.g., Wagner, Kimura, Cheung, & Barner, 2015), a variable that is likely to depend heavily on cultural
experience and, thus, be susceptible to intervention (e.g., Berkowitz et al., 2015). It is important to
note that although we draw conclusions about the potential foundations of early symbolic number
thought, our data are correlational and from a single time point. As such, strong claims about direc-
tionality and causality are not warranted. Nevertheless, our model provides the most comprehensive
foundation to date on which to prioritize variables in future longitudinal and experimental investiga-
tions of individual differences and intervention in early symbolic number knowledge acquisition.
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